O-Ring and Backup | FEP - PFA incapsulated O-Rings

 
FEP - PFA incapsulated O-Rings
DESCRIPTION
The simple shape of a rubber O-Ring with the chemical resistance of a fluorinated polymer. A fulfilling alternative choice to FFKM  O-Rings.
A reliable sealing solution for the chemical, pharma and food processing industry.
  • FDA Approved
  • 3A (Sanitary Standard) Approved
  • Available in any diameter
  • Temperature range
    • -25 + 200 °C with FPM  core (fluorinated rubber)
    • -50 + 200°C with MVQ core (silicone rubber)
  • Good compression set
  • Wide chemical resistance
  • Low friction coefficient
  • Don't stick to the surfaces
  • No ageing
  • Static applications (recommended), and slow non demanding dynamic applications

STANDARD GROOVES for
FEP encapsulated O-Rings

AS 568- ISO 3601/1

O-Ring

Cross Section

STATIC APPLICATIONS
H

GROOVE WIDTH
G

DINAMC APPLICATIONS
H
(avoid any excessive stress)

GROOVE WIDTH
G
         
1,78 1,25 2.7 1.50 2.3
         
2,62 1,90 3.8 2.25 3.3
         
3,53 2,70 5.0 3.10 4.4
         
5,33 4,30 7.3 4.70 6.5
         
7,00 5,75 9.5 6.10 8.6
         
8.00 6.50 10.9 7.00 9.8
         
9.00 7.30 12.3

7.90

11.0
         
10.0 8.20 13.5

8.80

12.2
         

12.0

10.00 16.1 10.50 14.7
         

For any furher informations, please contact our  application engineers

 


 

GROOVE DESIGN AND ASSEMBLING

 

  • Unlike elastomeric ones, FEP encapsulated O-Rings show poor diametrical elasticity, consequently they must be ordered according with the actual groove dimensions.
  • For the same reasons, open groove assembling should be preferred.
    The closed groove assembling (not suggested) requires pre-heating in water/oil bath; a preliminary test is strongly recommended.

 

 


 

 

CROSS SECTION B TOLERANCES


Encapsulated O-Rings show greater cross section tolerances when compared with elastomeric ones.

 

 

cross section B Inner Diameter A tolerances
     
1.50 / 1.78 / 2.00 / 2.5

12 <= ID < 16

ID >=16

-0.12 / + 0.14

-0.08 / + 0.08

     
2.62

12.5 <= ID < 18

ID >= 18

-0.12 / +0.14

-0.08 / +0.08

     
3.00

16 <=  ID <  22

ID >= 22

 -0.12 / +0.16

-0.08 / +0.08

     
3.53

17<= ID <  24

ID >= 24

-0.14 / +0.18

-0.08 / +0.08

     
4.00

26<=  ID < 32

ID >= 32

-0.15 / +0.20

-06010 / +0.10

 

 

 
4.50 / 5.00 / 5.33

30<=  ID < 37

ID >= 37

-0.18 / +0.26

-0.13 / +0.13

     
6.00

45 <= ID < 53

ID >= 53

-0.18 / +0.26

-0.13 / +0.13

     
6.50

45 <= ID < 55

ID >= 55

-0.20 / +0.30

-0.15 / +0.15

   

 

7.00

50 <= ID < 60

ID >=  60

-0.20 / 0.30

-0.15 / 0.15

     
8.00

70<= ID < 85

ID >= 85

-0.22 / +0.32

-0.16 / +0.16

     
9.00

100 <= ID < 110

ID >= 110

-0.24 / +0.34

-0.16 / 0.16

     
10.00

108 <= ID < 125

ID >= 125

-0.24 / +0.34

-0.17 / +0.17

     
12.00

135 <= ID < 145

ID > 145

-0.25 / +0.35

-0.17 / 0.17

     

 


PRODUCT CODE

EXAMPLE:

FEP O-Ring 98 x 3.53  MVQ Where:

- Jaket = FEP
- Inner Diameter A=98
- Cross section  B= 3.53
- O-Ring material= MVQ
SURFACE FINISH ACCORDING WITH FLUID
application max Ra µm
dynamic surface
max Ra µm
static surface
CRYOGENICS 0,1 0,2
FREON
HELIUM
HYDROGEN
0,2 0,3
AIR
NITROGEN
ARGON
METHANE
FUELS
0.2 0.4
WATER
OIL
0.3 - 04 0.6
ROTOLIP ROTARY SEALS
 Shaft surface

Ra 0.2 - 0.3 micron max.
Rz 1.0 - 2.5 micron max.
R max. < 4 micron
Shaft hardness

55 HRC min. for pressure up to 5 bar
60 HRC min. for pressure > di 5 bar
60 HRC for speed > 4m/sec
Surface treating deep

0.3 mm min.